Molecular orientation studies by pulsed electron-electron double resonance experiments.

نویسندگان

  • A Marko
  • D Margraf
  • H Yu
  • Y Mu
  • G Stock
  • T Prisner
چکیده

Pulsed electron-electron double resonance (PELDOR) has proven to be a valuable tool to measure the distribution of long range distances in noncrystalline macromolecules. These experiments commonly use nitroxide spin labels as paramagnetic markers that are covalently attached to the macromolecule at specific positions. Unless these spin labels are flexible in such a manner that they exhibit an almost random orientation, the PELDOR signals will-apart from the interspin distance-also depend on the orientation of the spin labels. This effect needs to be considered in the analysis of PELDOR signals and can, moreover, be used to obtain additional information on the structure of the molecule under investigation. In this work, we demonstrate that the PELDOR signal can be represented as a convolution of a kernel function containing the distance distribution function and an orientation intensity function. The following strategy is proposed to obtain both functions from the experimental data. In a first step, the distance distribution function is estimated by the Tikhonov regularization, using the average over all PELDOR time traces with different frequency offsets and neglecting angular correlations of the spin labels. Second, the convolution relation is employed to determine the orientation intensity function, using again the Tikhonov regularization. Adopting small nitroxide biradical molecules as simple examples, it is shown that the approach works well and is internally consistent. Furthermore, independent molecular dynamics simulations are performed and used to calculate PELDOR signals, distance distributions, and orientational intensity functions. The calculated and experimental results are found to be in excellent overall agreement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexibility and conformation of the cocaine aptamer studied by PELDOR.

The cocaine aptamer is a DNA three-way junction that binds cocaine at its helical junction. We studied the global conformation and overall flexibility of the aptamer in the absence and presence of cocaine by pulsed electron-electron double resonance (PELDOR) spectroscopy, also called double electron-electron resonance (DEER). The rigid nitroxide spin label Ç was incorporated pairwise into two h...

متن کامل

Multifrequency EPR analysis of the positive polaron in I2-doped poly(3-hexylthiophene) and in poly[2-methoxy-5-(3,7-dimethyloctyloxy)]-1,4-phenylenevinylene.

The W-band continuous-wave electron paramagnetic resonance (EPR) analysis of chemically induced polarons in drop-cast and spin-coated polyphenylenevinylene-type and polythiophene-type polymer films reveals rhombic g tensors in both cases. The dependence of the W-band EPR signals on the orientation of the spin-coated films with respect to the magnetic field indicates a high degree of backbone al...

متن کامل

Interaction of triarylmethyl radicals with DNA termini revealed by orientation-selective W-band double electron-electron resonance spectroscopy.

Spin labels selectively attached to biomolecules allow high-accuracy nanoscale distance measurements using pulsed electron paramagnetic resonance (EPR), in many cases providing the only access to the structure of complex biosystems. Triarylmethyl (TAM) radicals have recently emerged as a new class of spin labels expanding the applicability of the method to physiological temperatures. Along with...

متن کامل

W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.

A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orienta...

متن کامل

Pulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy.

Within this review, we describe a home-built pulsed electron paramagnetic resonance (EPR) spectrometer operating at 180 GHz as well as the incorporation of two double resonance techniques, electron nuclear double resonance (ENDOR) and pulsed electron double resonance (PELDOR), along with first applications. Hahn-echo decays on a TEMPO/polystyrene sample are presented, demonstrating that the obs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 6  شماره 

صفحات  -

تاریخ انتشار 2009